

Prepared for:
Southern Windsor County Regional Planning
Commission
Town of Springfield
Springfield Regional Development Corporation
Vermont Agency of Transportation
28 August 2008

R S G

Prepared for:
Southern Windsor County Regional Planning Commission Town of Springfield
Springfield Regional Development Corporation
Vermont Agency of Transportation
28 August 2008

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 PROJECT AREA DESCRIPTION 1
3.0 GEOGRAPHIC SCOPE OF STUDY 3
4.0 EXISTING CONDITIONS 4
4.1 ROADWAY NETWORK. 4
4.2 INDUSTRIAL PARK SIGNING 5
4.3 FINDING THE INDUSTRIAL PARK 6
4.4 EXISTING BRIDGE LIMITATIONS 7
4.5 TURNING MANEUVERABILITY 8
4.6 TRAFFIC DATA 12
4.7 PERMITTING 12
5.0 BUSINESS SURVEY 13
6.0 FUTURE CONDITIONS 15
6.1 BRIDGE IMPROVEMENTS 15
6.2 PLANNED DEVELOPMENT VOLUMES 15
6.2.1 Trip Generation 15
7.0 SAFETY ANALYSIS 16
7.1 CRASH HISTORIES \& HIGH CRASH LOCATIONS 16

Page 2

7.2 TURN LANE WARRANT ANALYSIS 17
8.0 IMPROVEMENT ALTERNATIVES 18
8.1 ROADWAY IMPROVEMENTS 18
8.1.1 Improve Main Street Between VT10 and Precision Drive 21
8.1.2 Widen Main Street Bridge West of Fairbanks Road 21
8.1.3 Realignment of Precision Drive "Triangle" with Main Street 22
8.1.4 Straighten South County Road 23
8.1.5 New Road between Precision Drive and VT10 23
8.1.6 New Road Between Precision Drive and Fairbanks Road 23
8.2 INTERSECTION IMPROVEMENTS 23
8.3 SIGNING IMPROVEMENTS 24
8.3.1 Industrial Park Sign 24
8.3.2 Signing Within Industrial Park 24
8.4 IMPROVEMENTS TO ON-LINE MAPPING DIRECTIONS. 25
8.5 CHANGES TO PERMITTING PROCESS 26
9.0 RECOMMENDED IMPROVEMENTS 27
LIST OF FIGURES
Figure 1: Project Vicinity Map. 3
Figure 2: D irections from Googlemaps to get to Industrial Park from the east. 7
Figure 3: WB-67 Truck Dimensions 8
Figure 4: Turning Movement of WB-67 at Main Street Intersections with Precision Drive and South County Road 9
Figure 5: Turning Movement of WB-67 Truck at Main Street \& Fairbanks Road intersection. 10
Figure 6: Turning Movement of WB-67 at VT10 \& South County Road intersection 10
Figure 7: Turning Movement of WB-67 at VT10 and Main Street intersection 11
Figure 8: Turning Movement of WB-67 at VT11 and VT103 intersection in Chester 11
Figure 9: Vermont Truck Network 13
Figure 10: Business survey Responses for Rating Issues Relative to Trucking 14
Figure 11: Project Alternatives 19
Figure 12: Reporting Changes to Mapping Database Example (TeleA tlas Web-Site Screen) 25
LIST OF TABLES
Table 1: Existing and Anticipated Truck Volumes - Precision Drive16
Table 2: VTrans HCLs near Industrial Park (2001-2005 D ata). 17
Table 3: Turn Lane Warrants Summary 18
Table 4: Evaluation Matrix of Roadway Improvement Alternatives 20
APPENDICES
A - Turning Movement Counts
B - Tube Count D ataC - Crash Data \& AnalysesD - Trip GenerationE - Turn Lane WarrantsF - Business Survey Results

1.0 INTRODUCTION

The purpose of this study is to evaluate traffic related issues in regards to the maneuverability and accessibility to and from the North Springfield Industrial Park located in North Springfield, Vermont. Tasks conducted as part of this study include determining and evaluating current truck traffic and routes, existing road conditions, existing truck traffic, and identifying alternatives for improving access to the Industrial Park. In addition, a business survey was conducted to gather information, thoughts and concerns from the businesses which are located in the Park.

This project is being conducted by the Southern Windsor County Regional Planning Commission (SWCRPC), with assistance from VTrans and the Steering Committee. The Steering Committee consists of the SWCRPC, the Town of Springfield, Springfield Regional D evelopment Corporation (SRD C), VTrans, and business owners

Looking north at the Main Street and Precision Drive intersection. within the Industrial Park.

2.0 PROJECT AREA DESCRIPTION

The existing Industrial Park is located south of Main Street on Precision Drive and Fairbanks Road. The project area is shown on Figure 1. There are fourteen businesses currently located within the Park. These include the following:

- JELD-WEN: Window and door manufacturer
- Acrylic Designs: Manufacturer of point of purchase display materials
- Kiosko: Manufacturer of display kiosks and other related furniture
- Lucas Industries: Manufacturing, engineering, and tool design
- Springfield Printing: Printing
- Hancor: D rainage pipe manufacturer
- CVPS: Electric Utility
- Springfield Tool Supply

Page 2

- Steve K raft: Forester
- Gurney Brothers Construction: Site work, contractor
- Churchill Coatings: Commercial Staining
- IVEK: Manufacturer
- Vermont Timber Works: Timber frame home manufacturer/ designer
- Ellsworth (former Ben \& Jerry's): Vacant
- Winstanley (property owners)

All but two of these companies are located on Precision D rive (the others are on Fairbanks Road). Winstanley is a company within the Park currently looking at expansion. The former Ellsworth (and Ben \& Jerry's) ice cream facility is currently vacant, but efforts are being made to redevelop this site.

There are a number of possible routes for vehicles to access the Park. These will be discussed later in this report. Due to signage and limited capacity on nearby bridges, it is the intention of the Town for large trucks to use VT10 to South County Road to Main Street to access the Park. It may be infrequently, but truck(s) have been seen accessing the Park from the west directly from Main Street across a bridge not adequate for large trucks.

Figure 1: Project Vicinity Map

3.0 GEOGRAPHIC SCOPE OF STUDY

The focus of this study is the local roadways and intersections that are used to access the North Springfield Industrial Park. These include the following roadway segments and their intersections:

- South County Road
- Main Street (focusing on the segment between South County Road and VT10)
- Precision Drive
- Fairbanks Road
- South County Rd / VT 10
- Main Street / VT 10

In addition to the above, VT10 between VT103 and VT106, and VT106 between VT131 and VT11 were taken into consideration. Truck routing beyond this area is an important consideration as the economic health of the industrial park largely depends upon connections to outside markets for goods and services.

4.0 EXISTING CONDITIONS

The project area is within Springfield's Industrial Zoning District. It is also proximate to residential neighborhoods and about one-half mile west of the North Springfield Village. The following sections discuss existing conditions within the project area based on a number of characteristics. The following does not discuss recommended improvements; these will be discussed later in this report. Roadway widths within the project area (i.e. Precision D rive, Fairbanks Road, Main Street, South County Road, VT10 between VT106 and Main Street) were measured in the field. O utside of the project area, widths listed are approximated based on driving through the area and by viewing VTrans video logs.

4.1 ROADWAY NETWORK

The roadway network within the project area was reviewed in regards to pavement widths, lane widths, roadway and intersection alignments and grades. The following is a summary of roadway conditions:

Precision Drive: Land use is industrial along the length of Precision Drive. This road is approximately 33 ' wide, and the speed limit is posted as 25 mph . This road is flat and the pavement along the length of the road is in good condition.

Fairbanks Road: This road is industrial at the northern end and residential at the southern end. The conditions of Fairbanks Road vary significantly. The road is approximately 17-18 feet wide between Main Street and the former ice cream facility and is in fairly good condition. The road south of this road continues to narrow to approximately 11 ' at the residential section. As the road gets narrower, the condition also gets worse with significant cracking towards the south. The southern section of this road, approximately 400^{\prime} in length, is gravel. The speed limit is not posted but is presumed to be 25 mph . This road is also flat.

Main Street: This road is primarily residential, with a few businesses on the eastern end of the road toward VT106. The pavement width between Precision D rive and Fairbanks Road is approximately 24^{\prime} wide and has numerous cracks. A 5^{\prime} sidewalk is located along sections of this road. This road is posted at 25 mph . Main Street is relatively flat and has a few horizontal curves. Approximately onehalf mile east along Main Street is the village of North Springfield, with a mix of residential, commercial, and light industrial uses.

South County Road: South County Road is approximately 29^{\prime} wide and has curbing and a sidewalk on the east side. The road appears to be in good condition. There is a sharp horizontal curve at both
the northern and southern ends of the road. The speed limit of this road is posted as 25 mph , and the grades range from moderate to steep approaching the VT10 intersection. This road is residential.

VT 10: This roadway is a rural minor arterial. Characteristics within the project area include wide shoulders, ranging from 6^{\prime} to 10.5^{\prime}, and a speed limit of 50 mph . Some limited paving work was done on VT10 a couple years ago. There are horizontal and S-curves along VT10 and the grades are moderate.

VT 106: This road is a rural major collector to the north of the intersection with VT10 and a rural minor arterial to the east of this intersection. The speed limit at the project area is 50 mph , and the grades are moderate to steep.

VT106 north to VT131 has adequate lane widths and shoulder widths varying between approximately $1-3$ feet. There is one notable horizontal curve, and the pavement is generally in good condition. VT106 south to the Village of Springfield has adequate lane widths and relatively wide shoulders. The pavement condition is in fair to good condition and is relatively straight.
VT 131: This road is a rural major collector west of the I-91 Exit 8 ramps. This road is in good condition, with shoulder widths varying between approximately 1 to 3 feet. There are at least a couple significant horizontal curves along this route between VT106 and I-91 Exit 8.
VT 11: This road is a rural minor arterial east of the intersection with VT106 and a rural major collector west of this intersection. This road is generally in good condition and has adequate shoulders outside of the Village. Within the Village, this road has narrow shoulders.
VT 103: In general VT103 is in fair to good condition. The travel lane widths are adequate. Shoulder widths from the Village of Chester to the north are generally narrow, and to the south of Chester to Rockingham are generally wide. VT103 is part of the State Truck Network.

4.2 INDUSTRIAL PARK SIGNING

Based on our business survey (see Section 5.0) as well as input received at Steering Committee meetings, a major concern of Industrial Park businesses is the inability to find the Park as well as finding specific business(es) once in the Park. This notion was reiterated during a recent turning movement count when a passing vehicle made a u-turn in the intersection, and then stopped to ask directions for the Industrial Park. We took a close look at existing signage

Sign at Main Street and Precision Drive intersection. within the Park as well as on roads
which access the park.
There is a large North Springfield Industrial Park sign on the southwest side of the Main Street and Precision Drive intersection listing businesses within the Park with directional arrows. However, this sign is oriented such that it is difficult for westbound vehicles to read the sign in advance of the Precision D rive intersection. The best location to read the sign is in the middle of the intersection. Once large trucks get to this point, it may be too late to turn onto Precision D rive.

Within the Park, many businesses do not have signs that are easily visible. It is our understanding that there are vehicles that turn around at the southern end of Precision Drive because they cannot find their destination. There are some signs that are oriented for southbound traffic; therefore making it difficult for a vehicle headed northbound on Precision D rive to find their desired location. This is not true with all businesses. A few businesses can be seen by either northbound or southbound vehicles.

There are a number of official business directional signs (OBD S) within North Springfield to assist drivers in finding the Industrial Park. Two of these signs are for "North Springfield Industrial Park" and the other signs are for specific businesses (i.e. CVPS, Hancor, Vermont Timber Works, Ivek Corporation, and Springfield Printing).

4.3 FINDING THE INDUSTRIAL PARK

D epending on the source of directions for vendors, one possible source of confusion for vendors getting to the Park is if they use on-line mapping web-site(s) for directions. For example, using Googlemaps and Mapquest leads vehicles to take TH708 to get to the Park. TH708 is the former Carpenter Road that began at the intersection of Main Street and South County Road and continued southwest to Precision Drive, as shown in Figure 2. Carpenter Road was discontinued by the Town approximately 10 years ago.

Figure 2: Directions from Googlemaps to get to Industrial Park from the east

As shown above, G ooglemaps also directs vehicles to turn left at the VT106 \& Main Street intersection instead of staying on VT106 and turning left at the VT10 \& South County Road intersection. Mapquest does not route vehicles onto Main Street from the east, but does route onto Main Street from the west. For passenger vehicles, it is appropriate to use Main Street but not appropriate for large trucks.

4.4 EXISTING BRIDGE LIMITATIONS

Main Street Bridge East of South County Road: A significant impediment for large trucks being able to use Main Street to the east of South County Road is a bridge less than 300^{\prime} east of the Main Street and South County Road intersection. There is a sign west of this intersection stating "Restricted Bridge Main St North Springfield / 5 Ton Weight Limit/ Clearance 9'-0". This sign is also placed on the eastern end of Main Street in the vicinity of the intersection with VT106 and on Main Street just to the west of School Street. There are also "no trucks" signs at the intersection with School Street and "weight limit 5 tons" signs at each end of the bridge. The lateral clearance of this bridge is 22.5^{\prime}. The nearby signs claim the bridge has a vertical clearance of 9 ', but there are actually no vertical restrictions on this bridge. At one time, laminated $2^{\prime \prime}$ x 8 " wooden barriers were placed at both sides of the bridge to serve as a vertical clearance barrier. These were broken down within days of multiple installations. After several attempts of replacing the barriers, the Town has stopped putting up these barriers.

Resource Systems Group, Inc.

Page 8

This bridge is locally known as the Harry Hills Bride. The wood deck of this bridge appears to be in good condition; however there are structural problems with this structure. This bridge is slated for future improvements through VTrans and the Town. The VTrans project number for these improvements is \#BRO

Restricted bridge sign on Main Street. 1442(26). This project is currently in
the development and evaluation phase. If the Town were to improve Main Street to encourage truck traffic on this route, it is assumed that the reconstructed bridge would not have a weight limitation and that the reconstructed bridge would therefore be adequate to handle truck traffic.

Main Street Bridge West of South County Road: There is a bridge located approximately 200' west of the intersection with Fairbanks Road on Main Street that has 21.5^{\prime} horizontal clearance. This bridge has "weight limit 5 tons" signs at each end of the bridge. There are no advance warning signs of this bridge. However, there is a "no trucks" sign on Main Street just east of the intersection with VT10.

4.5 TURNING MANEUVERABILITY

The intersections in the immediate vicinity of the Industrial Park have tight geometries which make it difficult for large trucks to make turning movements. Figure 3 shows the dimensions of a WB-67 truck, a standard long-haul, interstate truck.

Figure 3: WB-67 Truck Dimensions

Figure 4 through Figure 8 show turning movement paths of a WB-67 truck going through intersections within the project area. These figures show all movement combinations through the intersections. Red lines on these figures are the edges of the road, green lines are the edges of the
vehicle body, and purple lines are the vehicle paths. As shown in the figures below, all intersections are "tight" for this truck movement. The WB-67 tire path goes outside the pavement approximately 12^{\prime} at the VT11 and VT103 intersection. At other locations, the vehicle body goes outside of the roadway slightly in some areas. The worst case scenario in regards to this is for the Main Street and Fairbanks Road intersection for northbound right turns. Luckily, there are far fewer trucks on Fairbanks Road than on Precision D rive. In most instances, the truck has to cross into the opposing lane in order to make necessary turning movements.

Figure 4: Turning Movement of WB-67 at Main Street Intersections with Precision Drive and South County Road

Page 10

Figure 5: Turning Movement of WB-67 Truck at Main Street \& Fairbanks Road intersection

Figure 6: Turning Movement of WB-67 at VT10 \& South County Road intersection

Figure 7: Turning Movement of WB-67 at VT10 and Main Street intersection

Figure 8: Turning Movement of WB-67 at VT11 and VT103 intersection in Chester

4.6 TRAFFIC DATA

Various traffic data was collected to understand the existing traffic, truck traffic in particular, related to the Industrial Park. The following are some findings regarding existing traffic.

- 2006 VTrans data indicates VT10 has an Annual Average Daily Traffic (AADT) volume of 3,000 vehicles between the Chester town line and South County Road and 3,500 between South County Road and VT106.
- 2006 VTrans data indicates VT106 has an AADT of 3600 between the Weathersfield town line to the north and VT10; 6,100 between VT10 and Main Street; 11,200 between Main Street and Reservoir Road.
- In 2005, VT10 0.2 miles west of the Chester town line (east of the intersection with Main Street) had an Annual Average D aily Traffic (AADT) of approximately 3000. VT106 0.3 miles north of VT 10 had an AADT of approximately 3,600 with 1.3% large trucks.
- Tube counts conducted for this study indicate that the daily truck traffic (medium and large trucks) on Precision Drive is approximately 300. These trucks include approximately $2 / 3$ medium trucks and $1 / 3$ large trucks. Medium trucks are considered by the FHWA vehicle classifications to be buses, two axle 6 tire single units, 3 axle single units and four or more axle single units. Large trucks are all those larger than these (i.e. trucks with trailers).
- Fairbanks Road has negligible truck traffic and is primarily medium trucks.
- Main Street west of Precision D rive typically has approximately 60 trucks per day.
- Approximately 85\% of trucks at the VT10/ South County Road intersection are headed to/ from the east.
- At the VT10/ VT106 intersection, there are slightly more trucks headed to and from the east than to and from 106 to the north. Approximately 3 of every 4 trucks going eastbound are headed east (rather than north).

4.7 PERMITTING

In Vermont, over-length trucks (72 feet overall with 23 -feet from the front axle to rear axle) need a permit for each trip off the State truck network. As shown in Figure 9, I-91 and VT103 are on the truck route, but VT10 is not. Several companies have reported that obtaining over-length truck permits are an issue, especially for some of their vendors. The Industrial Park's top four truck traffic generators, making up approximately 80% of all trucks, all rated this issue as "very important" in the origin destination survey (see Section 5.0). These permits are issued by the Vermont Department of Motor Vehicles.

Figure 9: Vermont Truck Network

5.0 BUSINESS SURVEY

A business survey was conducted to determine routes accessing the Park, issues of the businesses within the Industrial Park, and to gain a general understanding of the project area and the dynamics of the truck traffic within the project area. Q uestions ranged from the number of trucks headed north, south, east, west to inquiring about destinations and routes of travel to ranking a number of issues by their importance. Questions and responses of the survey are given in the Appendices. The following is a summary of some key findings of the survey:

- 100% participation of businesses within the Park.
- Total of daily truck traffic estimated using survey is 149 trucks per day. O ne respondent responded in percentages (as opposed to actual truck volumes) therefore the actual number is slightly higher than this. Based on the tube count there are approximately 300 trucks per day. This number accounts for non-vendor trucks (i.e. delivery trucks) generated by the Park.
- Truck traffic is expected to increase by approximately 50 trucks in the next 10 years, based on answers from the survey.
- 14 responses in favor of cost-sharing for general improvements within the Park (2 were not in favor).
- 4 of the 16 respondents account for approximately 80% of the Park's truck traffic.
- Exit 6, Exit 7, Exit 8, and VT103 used almost equally for truck trips. Looking at the four highest truck traffic generators, these respondents ranked (from highest use to lowest) Exit 6, Exit 8, Exit 7, VT103.
- Respondents answers to which state highway route to improve were spread out almost equally. However, looking at the 4 highest truck traffic generators, two would like to target VT10 west to VT103 south to I-91; one would like to target VT10 west to VT103 north; and one would like to target VT10 east to VT106 north to VT131 east to I-91.
- In regards to specific local routes for improvements, respondents would like to see a new road from VT10 in line with Precision Drive (44\%), and Main Street west to VT10 improved (38\%). Of the 4 highest truck traffic generators, 3 would like to target Main Street west to VT10 for improvements and 1 would like to target a new road from VT10 in line with Precision D rive.

Figure 10: Business survey Responses for Rating Issues Relative to Trucking

As shown in Figure 10, there are a number of issues which are of concern to businesses within the Park. All four of the highest truck traffic generators gave very important ratings for over-length
permits. Three gave very important ratings for intersections being too small. Two of these four gave a very important rating for restricted bridges, park hard to find, and over-sized load permits.

6.0 FUTURE CONDITIONS

6.1 BRIDGE IMPROVEMENTS

Based on information from the SWCRPC, there are planned improvements for Bridge No. 57, which is located on Main Street east of South County Road. At this time the year of such improvements is uncertain. While bridge improvements are planned, the Town does not wish to encourage truck traffic in the village of North Springfield. There are no improvements planned for the bridge on Main Street west of Fairbanks Road.

6.2 PLANNED DEVELOPMENT VOLUMES

To get a sense for future demands on adjacent roadways, we took a look at potential future growth in the Industrial Park. We received information from SWCRPC regarding any possible developments planned within the North Springfield Industrial Park. There are two such developments which are in the planning phase, including the following:

- Redevelopment of the currently vacant Ellsworth ice cream facility ($38,000 \mathrm{sf}$) located on Fairbanks Road.
- Expansion at Winstanley, located on Precision Drive, including 200,000sf expansion of an existing building and a new building with an area of 350,000 sf.

6.2.1 Trip Generation

Trip generation refers to the number of new vehicle trips originating at or destined for a particular development. The number of trips generated depends on the land use of the property. The following includes our assumptions in estimating the number of trips the Ellsworth revitalization and Winstanley expansion will generate.

Winstanley expansion:

Size:
Land Use: Land use could vary from manufacturing, warehousing, industrial park, or a combination of such. PM peak hour generation for this expansion ranges from 182 to 473 depending on land use type or whether the existing traffic generation rate is used. Trip generation determined using existing trips (using tube count data) resulted in lower trips than using ITE Trip Generation. For the purposes of this study, we took the average ITE Trip Generation of manufacturing, warehousing, and
industrial park and averaged this with the current trip rate generated by the park. For Act 250 permitting purposes, further details should be finalized to determine a more precise land use for this expansion. In addition, the Act 250 permitting process will likely trigger the need for a Traffic Impact Study for this project. At that time, the known land use type should be used for determining trip generation.

Trip Generation Results: 2225 weekday trips, 264 during AM peak hour, 281 during PM peak hour

Ellsworth Revitalization

Size:
Land Use:

38,000sf revitalization of existing building

(Same as listed for Winstanley expansion except trip generation was developed using the average rate of the industrial park land code use and the existing traffic generation rate)

Trip Generation Results: 186 weekday trips, 21 during AM peak hour, 23 during PM peak hour

The following is a brief summary table of truck volumes associated with the Industrial Park on Precision D rive, both existing and with future growth:

Table 1: Existing and Anticipated Truck Volumes - Precision Drive
Condition No. of Daily Truck Trip Ends
Existing truck traffic 300
Additional trucks in 10 years, based on Survey results 50
Additional trucks at "build-out" on Precision Drive 450*
*This number could vary based on a number of factors and will need to be looked at in more detail during expansion of Winstanley.

7.0 SAFETY ANALYSIS

7.1 CRASH HISTORIES \& HIGH CRASH LOCATIONS

Crash histories were collected from VTrans (January 2002-D ecember 2006) within the study area. VTrans maintains a statewide database of all reported crashes along all state highways and federal aid
road segments. ${ }^{1}$ A reportable crash is a collision with at least one of the following results caused by the event: property damage exceeding $\$ 1,000$, personal injury, or fatality.

In order to be classified as a High Crash Location (HCL), an intersection or road section (0.3 mile section) must meet the following two conditions (1) it must have at least 5 crashes over a 5 -year period, and (2) an actual crash rate must exceed the critical crash rate. Based on the most current crash data available from VTrans (2001-2005), the following are HCLs near the Industrial Park.

Table 2: VTrans HCLs near Industrial Park (2001-2005 Data)

$\begin{gathered} \hline \text { HCL } \\ \text { No. } \\ \hline \end{gathered}$	Route	Location, by milemarker		ADT	Crashes	Ratio Actual/Critical	Index (\$/Accident)
Sections							
586	VT-10	0.46-0.76	(S County Rd is at mm 0.66)	3092	5	1.02	\$256,220
432	VT-106	2.3-2.6	(Main St is at mm 2.3)	6424	10	1.18	\$54,150
Intersections							
107	VT-106	3.18-3.38	(intersection with VT10)	6644	10	1.106	\$36,770

RSG calculations led to similar results as above ${ }^{2}$. D ue to differing years and therefore different numbers of crashes per sections and intersections, results were slightly different. There was one fatality at the VT10 section in vicinity of the South County Road intersection during the VTrans analysis summarized above.
Looking at crash data from 2002 to 2006, there was a variety of types of accidents. VT10 in vicinity of South County Rd had a majority of single vehicle crashes and rear ends. VT106 in vicinity of Main Street intersection had a majority of rear ends and sideswipes. The VT106 and VT10 intersection had a wide variety of crash types.

7.2 TURN LANE WARRANT ANALYSIS

Turn lane warrant analyses were conducted for the intersections in the immediate vicinity of the Industrial Park. The following are results from these analyses. The Winstanley expansion identified below includes both planned developments (550,000sf of expansion).

[^0]Table 3: Turn Lane Warrants Summary

Intersection	Existing Conditions	Winstanley Expansion
VT 10 \& South County Rd	-	westbound left turn lane
Main St \& Precision Dr	-	-
VT 10 \& VT 106	-	eastbound left turn lane
		westbound right turn lane

Main \& South County Rd
As indicated above, due to the significant traffic expected to be generated by the Winstanley development, roadway improvements will likely be needed to mitigate the traffic impacts resulting from the Winstanley expansion.

8.0 IMPROVEMENT ALTERNATIVES

There are a number of alternatives which would assist in providing better access to the North Springfield Industrial Park. These are summarized as follows.

8.1 ROADWAY IMPROVEMENTS

Figure 11 shows the alternatives being evaluated as part of this study. Table 4 summarizes the roadway improvements in an evaluation matrix. This includes conceptual level costs, environmental impacts, right-of-way impacts, and other important factors. Permit assumptions were determined based on G IS mapping. For alternative(s) moving forward, a more detailed evaluation will need to be conducted and regulatory agencies will need to be contact. The following sections summarize possible roadway improvements for this project.

Figure 11: Project Alternatives

Table 4：Evaluation Matrix of Roadway Improvement Alternatives

			$\stackrel{\check{L}}{\stackrel{L}{\Sigma}}$	$\begin{aligned} & \circ \\ & \frac{0}{2} \\ & \frac{5}{2} \end{aligned}$	을		$\frac{0}{2}$	$\frac{9}{2}$	은	ㅇ	$\frac{9}{2}$	인	$\begin{aligned} & \text { g } \\ & \text { o } \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { 兴 } \\ & \text { E } \end{aligned}$	然	$\frac{9}{2}$	$\frac{9}{2}$	$\frac{8}{2}$	은	2	안	$\frac{1}{2}$	$\stackrel{\circ}{2}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	능	¢
	8 8 O \％ H		$\begin{aligned} & \frac{x}{6} \\ & \frac{3}{5} \\ & \frac{8}{5} \end{aligned}$	$\begin{aligned} & y \\ & \rangle \\ & > \end{aligned}$	울	$\begin{aligned} & \frac{2}{9} \\ & \frac{7}{9} \\ & \frac{y}{5} \frac{2}{5} \\ & 5 \end{aligned}$	$\frac{ㅇ ㅡ ㄴ}{2}$	안	온	2	안	은			뿓	울	안	2	을	2	츨	안	욘	2	$\stackrel{8}{8}$	¢
	$\begin{aligned} & 8 \\ & 0 \\ & \frac{0}{m} \\ & \frac{2}{6} \end{aligned}$	）${ }_{\sim}^{4}$	$\begin{aligned} & \frac{x}{6} \\ & \frac{8}{5} \\ & \frac{8}{5} \end{aligned}$	$\frac{8}{y}$	$\stackrel{y}{8}$	$\begin{aligned} & \frac{2}{9} \\ & \frac{\lambda}{6} \\ & \frac{2}{5} \frac{3}{5} \\ & \frac{3}{5} \end{aligned}$	$\begin{aligned} & \frac{2}{9} \\ & \frac{10}{5} \\ & 5 \end{aligned}$	$\stackrel{\circ}{2}$	욘	안	은	인	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \frac{1}{\circ} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		区	욘	안	2	\％	2	츨	알	운	$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\stackrel{y}{8}$
	$\begin{aligned} & 8 \\ & \hline 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\stackrel{\text { N }}{\sim}$	$\begin{aligned} & \frac{2}{6} \\ & \frac{2}{c} \\ & 5 \end{aligned}$	$\frac{y}{y}$	y	$\begin{aligned} & \frac{2}{0} \\ & \frac{2}{6} \\ & \frac{3}{2} \\ & 5 \\ & 5 \end{aligned}$	안	안	욘	2	욘	2			©	울	안	2	2	2	2	\％	욘	$\stackrel{4}{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$
	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \text { 8 } \\ & \hline \end{aligned}$	$\stackrel{\text { co }}{\sim}$	$\begin{aligned} & \text { 증 } \\ & \frac{\text { x }}{5} \\ & \frac{1}{5} \end{aligned}$	$\stackrel{y}{8} \mid$	안		$\frac{0}{2}$	안	욘	안	안	2	을 E	$\begin{aligned} & \mathbf{g} \\ & \mathbf{0} \\ & \mathbf{0} \\ & \underline{E} \end{aligned}$	빧	운	욘	2	2	2	$\begin{aligned} & \frac{2}{0} \\ & \frac{0}{5} \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	안	안	2	\％	$\stackrel{8}{8}$
	8 8 8 8		$\stackrel{\circ}{2}$	2	$\stackrel{8}{8}$		$\left\{\begin{array}{l} \frac{x}{0} \\ \frac{3}{5} \\ \hline \end{array}\right.$	2	은	2	2	은	$\begin{aligned} & \text { © } \\ & 0 \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { ⿳亠口冖几心 } \\ & \text { E } \end{aligned}$	$\stackrel{\otimes}{\varnothing}$	알	안	2	$\stackrel{8}{8}$	2	$\begin{aligned} & \frac{\lambda}{0} \\ & \frac{0}{2} \\ & 0 \\ & 0 \\ & 0 . \end{aligned}$	2	2	$\stackrel{1}{2}$	$\stackrel{5}{8}$	$\stackrel{\infty}{8}$
	$\begin{aligned} & 8 \\ & \hline 0 \\ & 8 \\ & \hline \mathbf{8} \\ & 8 \end{aligned}$		$\stackrel{\circ}{2}$	은	$\stackrel{y}{8}$	$\begin{aligned} & \frac{3}{\phi} \\ & \frac{7}{9} \\ & \frac{2}{5} \\ & \frac{3}{5} \\ & 5 \end{aligned}$	$\left\{\begin{array}{l} \frac{x}{0} \\ \frac{8}{c} \\ 5 \end{array}\right.$	2	은	2	안	2	$\begin{aligned} & \text { Q } \\ & \text { 膏 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { g } \\ & ⿳ 亠 口 冋 几 \\ & \underline{E} \end{aligned}$	$\stackrel{\ddot{\delta}}{\gamma}$	\bigcirc	2	$\stackrel{8}{2}$		은	交	$\frac{0}{2}$	은	$\stackrel{\text { \％}}{\text { ¢ }}$	\％	$\stackrel{4}{8}$
			Utility Impacts	Right of Way Impacts			Floodplain	Fish and Wildlife		Public Lands	$\begin{aligned} & \frac{8}{0} \\ & \frac{2}{\mathrm{Z}} \end{aligned}$			Economic Impacts		谷	401 Water Quality	404 Corps of Engineers Permit	Stream Alteration						SHPO Clearance	
	1SO3	9	N NION				S10	Vd	dWI					$\begin{aligned} & 010 \\ & \forall כ C \end{aligned}$	SI 코 1						LIW	析				

8.1.1 Improve Main Street Between VT10 and Precision Drive

The existing road width along Main Street between VT10 and Precision D rive varies between 19'-4" and $22^{\prime}-0^{\prime \prime}$ (an average of approximately $20^{\prime} 8^{\prime \prime}$). The current AADT of Main Street west of Fairbanks Road is approximately 600 vehicles. However, if these improvements are made it is assumed that all of Precision D rive and Fairbanks Drive truck traffic will take Main Street in lieu of South County Road. In order for this alternative to be viable, the bridge west of Fairbanks Road will need to be replaced.

The desired road width for a local road according to VTrans State Design Standards varies depending on AADT. The following is a summary of data used to determine the recommended roadway width for improvements.
Main Street traffic volumes (between VT 10 and Precision Drive)Existing AADT on this roadway segment:600
Existing AADT on Precision D rive: 1500
Existing Precision Drive traffic using Main St: 60
If Improvements are made, what percentage of 100\%
Precision Drive traffic will use Main St:
Estimated AADT if improvements are made: 2040
Estimated AADT if Winstanley improvements are made: 4265
Road Widths
Average Existing Road Width: 20.67
Road Width in VT Design Standards for
(A) Existing Main Street traffic volumes: 9/2
(B) Anticipated traffic volumes on Main Street 11/3
(C) B above plus Winstanley improvements 11/3
*Note: road widths above are shown as travel lane/ shoulder

For the purposes of this study, conceptual improvement costs assume (B) above. This option suggests 11^{\prime} travel lanes and 3 ' shoulders, for a total road width of 28^{\prime}.

8.1.2 Widen Main Street Bridge West of Fairbanks Road

The existing bridge on this segment would need to be improved for large trucks to take this route to the Industrial Park. The bridge could be widened as a stand alone project. If the entire road segment between VT10 and Precision D rive is improved (previous alternative), then this bridge would need to be improved as well.

The existing bridge has a clear width of 21.5'. Based on VTrans D esign Standards and an AADT of over 2000 vehicles, a clear width of 22^{\prime} is suggested. This bridge will need to replaced to allow trucks to drive on Main Street, and the bridge will need to be widened in the process.

8.1.3 Realignment of Precision Drive "Triangle" with Main Street

A number of years ago there was a road (Carpenter Road) that connected South County Road to Precision Drive, making a triangle between the former Carpenter Road and the existing Precision Drive. One alternative discussed at a steering committee is to buy the triangle piece of land between Main Street, Precision Drive and the former Carpenter Road and rebuild Carpenter Road, wider than previously to accommodate large trucks. This option would have the benefit of eliminating truck turning movements from the Main Street / South County Road and Main Street / Precision D rive

Looking northeast at the former Carpenter Road (TH708). intersections. To determine the width of this road, the following data was used.

South County traffic volumes

Existing AADT on this roadway segment: 1300
Existing AADT on Precision D rive: 1500
Existing Precision Drive traffic using Main St: 60
If Improvements are made, what percentage of
Precision Drive traffic will use South County Rd:
Estimated AADT if improvements are made:
100\%

Estimated AADT if Winstanley improvements are made:
1560
Estimated AAD T if Winstanley improvements are made: 3785

Road Widths

Average Existing Road Width:0.00

Road Width in VT Design Standards for
(A) Existing Main Street traffic volumes: $\quad 9 / 2$
(B) Anticipated traffic volumes on Main Street $10 / 3$
(C) B above plus Winstanley improvements 11/3
*Note: road widths above are shown as travel lane/ shoulder
For the purposes of this study, we assumed the same volume of traffic on this section of road as on South County Road. Conceptual improvement costs assume (B) above. This option suggests 10' travel lanes and 3^{\prime} shoulders, for a total road width of 26^{\prime}.

8.1.4 Straighten South County Road

O ne alternative suggested at a Steering Committee meeting is to straighten South County Road such that the intersection with VT10 is to the west of its' existing location. The width of this road would be 26^{\prime} wide (similar to identified in Section 8.1.3 above). Environmental resources along this alternative include about 100^{\prime} of prime agricultural soils at the northern end of this road.

8.1.5 New Road between Precision Drive and VT10

A new road could be constructed running north-south between VT10 and Precision D rive, ending at the Main Street intersection with Precision Drive. Some key notes regarding this alternative are as follows:

- The width of this road would be 26^{\prime} wide (similar to identified in Section 8.1.3 above)
- A new bridge or large culvert would be needed, similar in size to the one at the southern end of South County Road.
- Environmental resources along this alternative include about 230^{\prime} of prime agricultural soils at the northern end of this alternative.
- Right-of-Way acquisitions necessary.

8.1.6 New Road Between Precision Drive and Fairbanks Road

According to business owners, there are some large trucks that turn around in Precision Drive and Fairbanks Road because they have difficulty finding their desired destinations. There are currently two businesses operating on Fairbanks Road. We assume that the AADT of this road will be between 400-1500, therefore based on VTrans State D esign Standards the road will have 9^{\prime} lanes with 2 ' shoulders, for a total width of 22^{\prime}. This alternative includes widening and repaving a portion of Fairbanks Road.

Terrain between Precision Drive and Fairbanks Road is flat.

8.2 INTERSECTION IMPROVEMENTS

As shown in the turning templates at the various intersections within the project area, trucks at all of the intersections are able to make the turns, but need to go outside of the roadway slightly (by approximately a foot or two) in some locations. This is based on roadway edgelines digitized based
on orthophotos. At all locations trucks need to go into the opposing lane in order to make the turn. Based on information obtained at a steering committee meeting, making these turns is especially difficult during the winter due to snow along the roads and shoulders.

The degree of intersection improvements could vary depending on the extent to which the Town would like to widen the intersections. Costs per intersection could range from $\$ 75,000$ to $\$ 200,000$. Widening shoulders (including earthworks, etc.) at the VT10 and Main Street intersection would cost approximately $\$ 75,000$. Improvement of the vertical alignment and widening shoulders at this intersection would cost about $\$ 200,000$.

Improvements to the other intersections would be less than for the above mentioned intersection. Due to the low truck volumes and low percentages of large trucks, improvements are not recommended for the Main Street and Fairbanks Road intersection.

8.3 SIGNING IMPROVEMENTS

8.3.1 Industrial Park Sign

The large Industrial Park Sign is difficult to see in advance of the Main Street and Precision D rive intersection. If the sign were rotated approximately 20° clockwise (tilted towards the east), the sign would be easier to see. One minor comment is that if the text for "Vermont Timber Works" were changed to "VT Timber Works" the size of the letters may be able to be larger, thus being the same size as the other text on this sign. It is our understanding that business owners are currently planning to change this sign.

8.3.2 Signing Within Industrial Park

There are some businesses which could be difficult for a driver to find if not familiar with the area. It would be beneficial for these drivers if improvements were made to signage for specific businesses. This could be accomplished by either (a) consistent signage at each drive's intersection with Precision Drive or Fairbanks Road, or (b) new signage for businesses that do not currently have a sign within plain site of the road. In addition, it has been mentioned that vehicles turn around on both Precision Drive and Fairbanks Road because they cannot find their destination. From our site visit, it is harder to find a business headed northbound on Precision or Fairbanks than it is headed southbound because most signs are oriented for southbound drivers to see them.
Another possible option is to add a sign at the southern end of South County Road to tell trucks to turn right for the Industrial Park. However, if the above recommendations are implemented, there will be four OBDS stating "North Springfield Industrial Park". An OBDS for a particular destination can only be at four locations within the town. Since the above improvements would make a total of four OBD S signs for the Industrial Park, the sign at this location would have to be for a different destination, perhaps a private sign paid for by Industrial Park tenants on Town right-of-way. This would need coordination between the Industrial Park, the Town, and VTrans.

The following is a summary of potential additions of OBD S signs relating to the Industrial Park.

- Add a sign to say "North Springfield Industrial Park" at existing OBDS on VT 10 west of the South County Road intersection. Similar to above, there are currently three signs on this assembly (VT Timber Works, Hancor, and Holiday Inn Express). This assembly will need to be modified in a similar manner as the previously identified sign assembly.
- Add an OBD S at the Main Street and Fairbanks Road intersection for Ivek and Vermont Timber Works.

Lastly, a "freight entrance" sign could be added to South County Road to make vehicles aware of the Industrial Park.

8.4 IMPROVEMENTS TO ON-LINE MAPPING DIRECTIONS

As mentioned previously in this report, Google and Mapquest both route drivers to take a road that no longer exists (TH708 or the former Carpenter Road). It appears that map data in G oogle is generated via base mapping provided by NAVTEQ. The MapQ uest web-site lists map data via NAVTEQ or TeleA tlas. There is a function on both NAVTEQ and TeleA tlas web-sites where you can report changes to the road network, these range from adding roads, removing roads, road restrictions, etc. Figure 12 shows a screen shot of TeleA tlas web-site where you can report changes to road data.

Figure 12: Reporting Changes to Mapping Database Example (TeleAtlas Web-Site Screen)

It is recommended that Carpenter Road be removed in both of these databases. In addition, if the Town feels it necessary, it could be requested that "no trucks" be allowed to take Main Street between VT10 and South County Road. However, if Carpenter Road is rebuilt or if Main Street is improved to allow trucks, the Town should make sure that the appropriate roads are opened/ closed with appropriate restrictions on the above web-site databases.

8.5 CHANGES TO PERMITTING PROCESS

A short term option regarding the over-length permit process that could be discussed with VTrans and the D MV is making the permit application available on-line where the trucking company can apply for a permit on the Vermont DMV web-site, pay by credit card, and print out an "approved" permit.

In order for a change to be made to the process of obtaining over-length permits, a change would need to be made at the legislative level. This could be a lengthy process because it entails first determining and local agencies agreeing on a recommendation as to how the permitting process should be changed, getting this recommendation in front of the legislature, and then meeting the appropriate approvals at a legislative level. There have been a number of discussions within the Department of Motor Vehicles regarding this issue. Options to address this issue include the following:

1. Continue with existing process.
2. Seek legislative change to either eliminate or completely revamp the over-length permit process, or add routes onto the state truck route network.

The plan of action to address this concern will largely depend on which of these the SWCRPC and/ or Town would like to pursue and how much effort they would like to commit to an improved permitting process. VTrans should be consulted with in regards to any such legislative changes. If the SWCRPC and/ or Town would like to pursue adding VT10 onto the truck network, VTrans is likely to have concerns due to "S-curves" along this road. There are also sharp curves on VT106 which could be problematic if this route was desired to be added to the truck network.

Strengthening the Vermont Truck and Bus Association would encourage the second option listed above and would also assist industrial parks across the State to unite and guide them through the permitting process. There are a number of other states which have Truck Association web-sites which list a number of different resources from searching for trucking jobs to trucker forums to legislative support information, etc. For example, on the New Hampshire Motor Transport Association Homepage (www.nhmta.org) it states that there are lobbyists for the NHMTA. On the Ohio Trucking Association web-site (www.ohiotruckingassn.org) you can search for a vendor by category. Pursuing this option would imply that the association would serve not only the North Springfield Industrial Park, but other similar parks throughout Vermont. The overall trucking industry may be smaller in Vermont, but it does not mean that strengthening this organization would not be beneficial, especially if other Industrial Parks in the State face the same issues as businesses in
the North Springfield Industrial Park. For small words of encouragement on this issue, on the Ohio Trucking Association web-site it states that " 54% of [their] current members operate 15 or fewer vehicles".

9.0 RECOMMENDED IMPROVEMENTS

As identified above, there are a number of improvements which could help in improving access to the North Springfield Industrial Park. RSG has worked in collaboration with the SWCRPC to recommend the following list of recommendations.

Short-Term:

G eneral

1. Establish a North Springfield Industrial Park Association (NSIPA).
2. Town or SWCRPC to request changes to on-line routing programs (e.g. MapQuest, GoogleMap, TomTom, etc.).

Roadway

1. The Town to discuss snow removal and corner clearance issues with the Public Works Director and plow operators. The Town should make the plow operators aware of the conditions in the project area, and there may be the opportunity to improve plowing and snow removal in this area.

Signage

1. Additional official business directional signs:
(A) The Town and SWCRPC to apply for OBD S on VT 10 as close to South County Road as possible in both directions.
(B) The Town and SWCRPC to meet with VTrans to discuss other possible signage options (i.e. "freight entrance" sign).
(C) The Town and SWCRPC to meet with Industrial Park owners if the above are not possible to see if any business(es) are willing to change their OBD S to a more general "North Springfield Industrial Park" sign.
2. Replace main park entrance sign at the intersection of Precision D rive and Main Street with assistance of NSIPA.
3. Internal signage improvements with assistance of NSIPA.

Permitting

1. The SWCRPC to work with the Town, State, legislators, businesses and towns to address the over-length permitting issue.

Mid-Term

Roadway

1. The Town to develop a feasibility study for new road projects and turning lanes as recommended in this report, with assistance from the SWCRPC.
2. The Town/ SWCRPC to seek funding for improvements, with assistance from Legislators.

Long-Term

Roadway

1. The Town to construct a new road connecting Precision D rive to VT 10.
2. Construct turning lanes as development warrants. This should be a joint effort of the Town and the developer(s) within the Industrial Park.
3. Construct new road between Precision Drive and Fairbanks Road, and upgrade sections of Fairbanks Road. This should be a joint effort of the Town and developer(s) within the Industrial Park.

	note:																		Source:										VTrans	
	Eastbound						WestboundVT106						Northbound						Southbound VT106						Pedestrians				$\begin{aligned} & 15 \mathrm{Min} \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Hour } \\ & \text { Total } \end{aligned}$
	L	(t)	T	(t)	R	(t)	L	(t)	T	(t)	R	(t)	L	(t)	T	(t)	R	(t)	L	(t)	T	(t)	R	(t)	EB	WB	NB	SB		
6:00 AM	1	0	14	1	0	0	0	0	24	3	9	0	0	0	0	0	0	0	11	0	0	0	5	0	0	0	0	0	68	
6:15 AM	5	0	16	0	0	0	0	0	10	1	8	0	0	0	0	0	0	0	10	0	0	0	3	0	0	0	0	0	53	
6:30 AM	8	0	16	0	0	0	0	0	14	5	7	1	0	0	0	0	0	0	14	0	0	0	3	0	0	0	0	0	68	
6:45 AM	5	1	25	1	0	0	0	0	7	0	5	2	0	0	0	0	0	0	10	1	0	0	8	1	0	0	0	0	66	255
7:00 AM	2	0	11	0	0	0	0	0	7	0	4	1	0	0	0	0	0	0	3	0	0	0	2	0	0	0	0	0	30	217
7:15 AM	6	1	16	0	0	0	0	0	15	0	11	0	0	0	0	0	0	0	12	1	0	2	3	0	0	0	0	0	67	231
7:30 AM	5	2	9	2	0	0	0	0	15	1	4	0	0	0	0	0	0	0	8	0	0	0	4	1	0	0	0	0	51	214
7:45 AM	8	0	23	2	0	0	0	0	20	2	15	1	0	0	0	0	0	0	31	1	0	0	4	0	0	0	0	0	107	255
8:00 AM	2	1	15	1	0	0	0	0	14	3	9	0	0	0	0	0	0	0	33	1	0	0	9	0	0	0	0	0	88	313
8:15 AM	2	0	24	0	0	0	0	0	14	1	13	1	0	0	0	0	0	0	21	1	0	0	8	0	0	0	0	0	85	331
8:30 AM	4	0	26	1	0	0	0	0	19	3	12	1	0	0	0	0	0	0	25	0	0	0	3	1	0	0	0	0	95	375
8:45 AM	6	0	23	0	0	0	0	0	19	0	9	1	0	0	0	0	0	0	26	1	0	0	6	0	0	0	0	0	91	359
9:00 AM	4	1	21	5	0	0	0	0	19	4	18	0	0	0	0	0	0	0	24	0	0	0	4	0	0	0	0	0	100	371
9:15 AM	6	0	19	0	0	0	0	0	16	0	16	0	0	0	0	0	0	0	22	0	0	0	5	0	0	0	0	0	84	370
9:30 AM	9	0	17	0	0	0	0	0	15	4	14	0	0	0	0	0	0	0	23	2	0	0	6	0	0	0	0	0	90	365
9:45 AM	6	0	16	3	0	0	0	0	15	6	21	0	0	0	0	0	0	0	22	0	0	0	6	2	0	0	0	0	97	371
10:00 AM	7	0	20	4	0	0	0	0	16	4	17	0	0	0	0	0	0	0	18	0	0	0	4	0	0	0	0	0	90	361
10:15 AM	6	0	13	1	0	0	0	0	29	3	18	1	0	0	0	0	0	0	17	0	0	0	7	2	0	0	0	0	97	374
10:30 AM	2	0	19	1	0	0	0	0	18	2	19	2	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	87	371
10:45 AM	8	2	19	1	0	0	0	0	15	3	14	1	0	0	0	0	0	0	18	3	0	0	4	1	0	0	0	0	89	363
11:00 AM	3	0	16	4	0	0	0	0	24	1	20	3	0	0	0	0	0	0	24	1	0	0	4	1	0	0	0	0	101	374
11:15 AM	6	1	21	4	0	0	0	0	17	3	22	0	0	0	0	0	0	0	16	1	0	0	6	0	0	0	0	0	97	374
11:30 AM	10	2	17	1	0	0	0	0	15	2	15	2	0	0	0	0	0	0	15	2	0	0	7	1	0	0	0	0	89	376
11:45 AM	7	2	18	3	0	0	0	0	19	3	18	1	0	0	0	0	0	0	12	2	0	0	10	1	0	0	0	0	96	383
12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	282
12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	185
12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	96
12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PML	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																											AM (6)	M-6PN	M) Peak	383 0

TUBE COUNT DATA

B-A=SB							
Autos	Medium	Heavy	$\%$ A	$\%$ M	$\%$ H	$\%$ T	
182	10	8	91%	5%	4%	9%	
76	4	2	93%	5%	2%	7%	
574	85	39	82%	12%	6%	18%	
580	94	62	79%	13%	8%	21%	
578	90	52	80%	13%	7%	20%	
575	102	55	79%	14%	8%	21%	
	Average:	36					
	Maximum:	62					

Summary of Tube Count Data for Precision Drive
North Springfield, VT

Summary of Tube Count Data for Main Street west of Fairbanks Rd North Springfield, VT
EB

$A-B=E B$
$B-A=W B$

5isixiso io ix

なํํํำ

のレレ

Summary of Tube Count Data for South County Rd North Springfield, VT

B-A=SB						
Autos	Medium	Heavy	$\%$ A	$\%$ M	$\%$ H	$\%$ T
291	13	6	94%	4%	2%	6%
210	2	5	97%	1%	2%	3%
514	67	32	84%	11%	5%	16%
543	74	42	82%	11%	6%	18%
497	63	40	83%	11%	7%	17%
500	75	35	82%	12%	6%	18%
	Average:	27				
	Maximum:	42				

B-A=WB						
0	Autos	Medium	Heavy	$\%$ A	$\%$ M	$\%$ H
9	51	25	11%	60%	29%	89%
35	33	18	41%	38%	21%	59%
12	76	43	9%	58%	33%	91%
19	117	66	9%	58%	33%	91%
30	86	56	17%	50%	33%	83%
50	85	47	27%	47%	26%	73%
	Average:	43				
	Maximum:	66				

Summary of Tube Count Data for VT106 south of VT10 North Springfield, VT

$\begin{array}{llllll}\text { No improper driving } & \text { Single Vehicle Crash } & 1 & 0 & \text { N } & \text { SH } \\ \text { No improper driving，Disregarded traffic signs，} & \text { Opp Direction Sideswipe } & 0 & 0 & \text { SH }\end{array}$
エ

0
0

$$
{ }^{2}
$$

■
E

$$
\square
$$

$$
\square
$$

エ

$$
\begin{aligned}
& \text { I } \\
& \geq
\end{aligned}
$$

$$
\begin{aligned}
& 9002-2002 \\
& \text { HSYe口 } \\
& \text { HS } \\
& \text { HS } N
\end{aligned}
$$

2002－2006 General Yearly Summaries Information
Vermont Agency of Transportation
Date
səэuełswnoљ！כ 6u！̣nq！ıұиoว
Direction Of Collision
2002－2006 General Yearly Summaries Information

$$
\begin{array}{llll}
0 & 0 & \mathrm{~N} & \mathrm{SH} \\
0 & 0 & & \mathrm{SH} \\
0 & 0 & \mathrm{E} & \mathrm{SH} \\
0 & 0 & & \mathrm{SH} \\
1 & 0 & & \mathrm{SH} \\
\hline 0 & 0 & \mathrm{~N} & \mathrm{SH} \\
\hline 2 & 0 & \mathrm{~N} & \mathrm{SH} \\
2 & 0 & & \mathrm{SH} \\
1 & 0 & \mathrm{~N} & \mathrm{SH} \\
\hline
\end{array}
$$

Disregarded traffic signs, signals, road markings, No	No Turns, Thru moves only, Broadside ^<	0	0	E	SH
No improper driving	Single Vehicle Crash	0	0	S	SH
Failure to keep in proper lane or running off road,	Single Vehicle Crash	1	0	N	SH
No improper driving	Single Vehicle Crash	0	0	N	SH
Failed to yield right of way, No improper driving	No Turns, Thru moves only, Broadside ^<	0	0	E	SH
Failed to yield right of way	Head On	2	0		SH
Failure to keep in proper lane or running off road,	Single Vehicle Crash	1	0		SH
No improper driving, Failure to keep in proper lane or running off road	Opp Direction Sideswipe	1	0		SH
No improper driving, Failed to yield right of way	Left Turn and Thru, Angle Broadside -->V--	1	0		SH
Disregarded traffic signs, signals, road markings, Inattention	Single Vehicle Crash	0	0		SH
No improper driving, Failed to yield right of way	Left Turn and Thru, Broadside V<--	2	0		SH
Failed to yield right of way, Inattention, No improper drivina	Left Turn and Thru, Angle Broadside -->v--	0	0	N	SH
Inattention, Disregarded traffic signs, signals, road markings	Single Vehicle Crash	1	0	S	SH
Unknown	Rear End	1	0	S	SH
Inattention, No improper driving	Rear End	0	0		SH
No improper driving, Failed to yield right of way	Head On	0	0		SH
Inattention	Single Vehicle Crash	0	0	E	SH
Failed to yield right of way, Distracted, No improper	Head On	3	0	N	SH
Followed too closely, No improper driving	Rear End	0	0		SH

[^1]
CALCULATIONS

VTmm0 = Chester Town Line VT10mm.664=intersection with County Rd VT10mm.833=intersection with VT106		
SECTION NAME	VT10 - mm.533-mm0.833	VT106-mm2.30-mm2.60
Number of Years	5	5
Total Crashes	7	12
Segment Length (mi)	0.30	0.3
AADT	3570.00	6222.00
Average Rate	1.1013	1.1013
K	2.58	2.58
M	1.95	3.4065
Actual Rate (segment)	3.581	3.523
Critical Rate	2.782	2.421
Actual/Critical Ratio	$\mathbf{1 . 2 8 7}$	$\mathbf{1 . 4 5 5}$
High Crash Location	Yes	Yes

INTERSECTION NAME	VT10/VT106	
Number of Years	5	
Total Crashes	10	
ADT - EB Approach	1551	
ADT - WB Approach	2568	
ADT - NB Approach	0	
ADT - SB Approach	1369	
Average Rate	0.556	0.0000
	2.58	\#DIV/O!
M	5.0075	\#DIV/0!
Actual Rate	1.997	\#DIV/0!
Critical Rate	1.316	\#DIV/0!
Actual/Critical Ratio	$\mathbf{1 . 5 1 8}$	
High Crash Location	Yes	

Count $=2006$
DHV $=0.1084$ * AADT +30

Growth, per red book chart (2006->2008) $=1.02$
DHV AADT 1951520
3032518
0 0
1751342

APPENDIX D

TRIP GENERATION

		Weekday	AM Peak Hr of adjac	PM Peak Hr nt traffic	
--------------- EXISTING TRAFFIC ---------------					
	Precision Drive $\quad \begin{array}{r}\text { trucks } \\ \text { autos } \\ \text { total }\end{array}$	304 1153 1457	26 121 147	$\begin{gathered} 31 \\ 138 \\ 169 \end{gathered}$	
--------------------- TRIP GENERATION -------------------					
ITE Trip Generation: Winstanley					
	200000sf expansion	1049	135	138	
	350000sf new building	1836	236	242	
	combined developments (Trip Generation Ranges)				
	Manufacturing LCU (550k sf)	2101	402	407	
	Warehousing LCU (550k sf)	2728	248	259	
	Industrial Park LCU (550k sf)	3828	462	473	
	average	2886	370	380	
	Trip Generation based on existing Park rates: Winstanley				
	200000sf expansion	569	57	66	
	350000sf new building	996	100	116	
		combined developments			
	all vehicles	1565	158	182	
	trucks only	327	28	33	
\% ITE Trip Generation: Ellsworth, using Industrial Park LCU					
¢	38000sf bldg revitalization	264	32	33	
Trip Generation based on existing Park rates: Ellsworth					
	38000sf bldg revitalization	108	11	13	

1. Assume 0\% Pass-By Rate.
2. Pro-Rated Trip Generation assumes a similar rate of traffic generated/sf foot development as the existing Park generates (existing square footage of Industrial Park, based on orthophotos, is approximately 512000 sf.

APPENDIX F

What are your days of operation?

What types of trucks are in your fleet?

 not own or lease), No Fleet Vendors Trucks, Utility Bucket and Digger Trucks, Passenger Vehicles, and No Company Vehicles.
What are your hours of operation?

North Springfield Truck Study
Business Routing and Issues Survey Results

North Springfield Truck Study
Business Routing and Issues Survey Results

Do you anticipate using different trucking routes in the future than you currently use?

The "yes" respondant stated use of Exit 6, Exit 7, and VT103 North. This respondant answered existing route used is via Exit 7.

North Springfield Truck Study
Business Routing and Issues Survey Results
What routes do you typically take?

"Other" includes VT106 South to 91 South.
 which would it be?

Business Routing and Issues Survey Results

North Springfield Truck Study
Business Routing and Issues Survey Results

[^0]: ${ }^{1}$ This data is exempt from Discovery or Admission under 23 U.S.C. 409.
 ${ }^{2}$ RSG calculations use 2002-2006 data. Table 2 data is 2001-2005, because the HCL report has not been published for 20022006 data.

[^1]: Notes:
 VT10 mm 0.66 is intersection with South County Rd.
 VT10 mm . 833 is intersection with VT106.
 VT106 mm 3.283 is intersection with VT10.
 The only intersection with 5 or greater accidents within 5 years is VT106 at mm3.28 (intersection with VT106).
 The only sections with 5 or greater accidents within 5 years is VT10 $\mathrm{mm} 0.533-\mathrm{mm} 0.833$ (contains intersections with South County Rd and VT106) and
 VT106 section containing intersection with VT10.

